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An array of air-filled capillary-attached conductive gas sensors was applied to fabricate an electronic nose. The ability of the 
developed structure was investigated in analyzing the number of components of different gas mixtures. Feature data sets 
were generated from the dynamic responses of the sensor array to the applied odor database of gas mixtures. 
Combinations of different feature extraction and classification methods were used to detect the number of components of 
target gases and validation of each technique was studied. Achievements proved high classification accuracy of the 
fabricated e-nose in gas mixture component analysis. 
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1. Introduction 
 

During last three decades the extensive research has 

been conducted on the development of artificial nose also 

called electronic nose (e-nose). As a result, this sensing 

instrument which mimics the mammalian sense of aroma 

has been commercialized. Numerous applications in a food 

quality control, medical diagnosis and environmental 

monitoring have been reported [1]. However, further effort 

is still needed in order to improve the e-nose performance 

such as improving the selectivity, and the ability of 

quantitative analysis in compare with classical instruments 

such as gas chromatography/mass spectrometry (GC/MS).  

The fundamental idea behind the electronic nose is to 

distinguish different odor samples for certain applications. 

However, some research and investigations have also 

reported the ability of the e-nose in analyzing gas mixtures 

components [2-4]. Researches have investigated the ability 

of the electronic nose on the gas mixtures analysis by 

applying the typical structure of e-nose. The typical 

structure of the electronic nose includes an array of the 

chemical gas sensors and a pattern recognition unit [1, 5].  

This research has focused on the development of the 

novel structure of the e-nose based on an air-filled 

capillary attached to a metal oxide semiconductor (MOS) 

conductometric gas sensor to analyze the number of 

components in different gas mixtures. The capillary 

attached Gas Sensor (CGS) based on the diffusion process 

of gas through the air-filled capillary tube is a simple and 

efficient approach to improve the performance of the 

single MOS sensor as well as MOS sensors array 

employed for e-nose [6, 7]. 

It has been indicated that the data regarding the nature 

of a target gas (TG) can easily be extracted from the 

corresponding transient response of the CGS and any 

specifically defined point on the transient responses can be 

applied to compare and detect different gases along with 

temporal analysis [6, 8, 9]. 

A laboratory model of the proposed structure has been 

developed, tested and optimized its performance in vapor 

mixtures.  As a result presented in the next sections, the 

novel artificial nose employing the transient response is 

generating high classification rates in quantitative gas 

mixture analysis, and it will be useful to extend machine 

olfaction applications. 

 

 

2. Theory and structure of the CGS 
 

The CGS structure is split into two basic parts: a MOS 

gas sensor and Quartz air-filled capillary diffusion tube 

[6]. An image of a fabricated prototype CGS is presented 

in figure 1. The MOS sensor is either attached or 

fabricated at the end of a diffusion tube and the attached 

area is closed and sealed completely. Then, a target gas 

will solely diffuse from the opposite end of the tube. 

Equation (1) is generally used to describe the variation of 

connectivity of the single MOS gas sensor [10-12]. The 

conductivity variation of the sensing element of a MOS 

gas sensor, ΔG, to a certain concentration level (C) of a 

target gas (TG) with specific constants S and m can be 

delineated as 
mSCG                                (1) 
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Fig. 1. Picture of a prototype CGS fabricated 

 

 

The values of S and m determine the respective 

sensitivity of a sensor provided by the sensor 

manufacturer. m is also related to the concentration of a 

TG functionally and the range of this fluctuation is 0.5–0.9 

[12]. In an experiment, the diffusion process is started at 

certain time. The TG has to diffuse through the effective 

length of the air-filled diffusion tube (L in figure 1) before 

reaction takes place with the MOS gas sensor. Therefore, 

the concentration of the TG is time dependent at the closed 

end of the diffusion tube, where the MOS gas sensor is 

placed. The dynamic response of the applied MOS gas 

sensor in the CGS structure is analytically explained by 

[6]: 
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where D is the diffusion coefficient for a TG, L is the 

effective length of a diffusion tube, and t is the time since 

the diffusion process started. erfc(x) is the complementary 

error function and x is the real variable: 
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Evaluation of equation (2) indicates that a TG with 

higher D has faster response. Quantitative evaluation of 

equation (4) can be investigated by comparing any specific 

defined point on the transient responses of the CGS to 

different TGs [6]. 

In this study, a sensor array including 9 CGS 

prototypes was fabricated. A list of applied MOS gas 

sensors for fabricating CGS samples is presented in table 

1. Quartz tubes of 0.5 mm diameter and 50 mm length 

were applied to fabricate the CGS samples. These 

dimensions were selected to optimize selectivity, response 

time and recovery time due to aim of this study. Longer 

length and smaller diameter increase the selectivity but 

make the response time and recovery time longer [13]. 

However, 0.5 mm diameter was selected to improve the 

selectivity. 

 

 

Table 1. List of selected gas sensors to fabricate CGS prototypes. 

 

Sensor 

No. 

Model      

(Part No.) 

Categories Application 

1 SB-15-00 Gas detectors Propane/butane 

2 SB-19-00 Gas detectors Hydrogen 

3 SB-AQ1-04 Indoor air quality General purpose 

4 SP-11-00 Gas detectors Fuel gas (Hydrocarbons) 

5 SP-12A-00 Gas detectors, Fuel cell Methane 

6 SP-19-00 Gas detectors Hydrogen 

7 SP-31-00 Gas detectors Organic solvents, , Alcohol 

8 SP3-AQ2-01 Indoor air quality General purpose 

9 SP3S-AQ2-01 Indoor air quality General purpose 

 

 

3. Design of the experiment 
 

3.1. Measurement system 

 

The schematic diagram of the fabricated measurement 

system is presented in figure 2. The static measurement 

mode was selected to design and develop the measurement 

system. In this method the TG has to equilibrate in the 

measurement environment first [14]. A chamber of 20 liter 

capacity was selected to build an experiment environment 

to prepare low level concentrations. A fabricated sensor 

array was attached to the chamber via an automatic 

impermeable gate. 

 

 

 
 

Fig. 2. Schematic diagram of the measurement system designed. 
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The temperature and humidity of the experiment 

environment were monitored during all experiments to 

keep the measurement system under stable conditions and 

to omit environmental interfering effects from the 

response of the sensors. The stable environment with 

constant levels of humidity and temperature provides 

better reproducibility. Injection of a gas mixture into the 

chamber was performed when the impermeable gate was 

closed. The measurement system was paused for a while 

until the inserted gas mixture settled down completely in 

the chamber. The impermeable membrane of the gate was 

removed and measurement was started at t = 0. 

Diffusion of the equilibrated gas mixture was started 

through the effective length of the diffusion tubes. The 

output of sensors was transferred to the digital computer 

by a data acquisition system. Measurement was continued 

up to a steady state level and the output converted to the 

variation of conductivity in time was recorded. 

3.2. Odor database 

 

A database of gas mixtures including two to four 

components of short-chain alcohols was applied to 

evaluate the classification performance of the fabricated e-

nose. Experiment was repeated over different days at 

different time intervals for each gas mixture to assess the 

reproducibility of the measurement system. Since 

experiments were designed in a static mode, gas mixtures 

were prepared by pumping certain amount of each 

component into the chamber of the measurement system. 

A summary of odor databases is presented in tables 2 and 

3. Gas mixtures in combinations of the four short-chain 

alcohols were generated in the different low concentration 

below 100 ppm. Experiments were repeated over 3 days. 
 

 

 

Table 2. Detail of gas mixtures database 

 

Class Label Odor Type No. of Gas 

Mixtures 

No. of 

Experiments 

per 

concentration 

Total  

No. of Samples per Gas 

mixture 

1 Mixture of 2  6 9 90 

2 Mixture of 3  4 9 90 

3 Mixture of 4  1 9 90 

 
Table 3. Detail of gas mixtures identity 

 

Class 

Label 

                 1                 2                  3 

Class 

Name 

Mixture of 2 Gases Mixture of 3 Gases Mixture of 4 Gases 

 Methanol &Ethanol Methanol & Ethanol & 2-

Propanol 

Methanol & Ethanol & 2-

Propanol & 1-Butanol 

 Methanol & 2-

Propanol 

Methanol & Ethanol & 1-

Butanol 

 

 Methanol & 1-

Butanol 

Methanol & 2-Propanol & 1-

Butanol 

 

 Ethanol & 2-Propanol Ethanol & 2-Propanol & 1-

Butanol 

 

 Ethanol & 1-Butanol   

 2-Propanol $                       

1-Butanol 

  

 

 

3.3. Preprocessing 

 

The flow diagram presented in Fig. 3 describes the 

processing steps in this study. Signal preprocessing is the 

first step applied generally to modify the response of 

sensors and to limit the impact of disturbances. These 

problems are generated by unequal responses of a sensor 

and fluctuations due to environmental interfering 

parameters. Then, features with higher identification 

impacts could be selected to improve the result of next 

stages in the pattern recognition and classification process. 

Any of the following three major categories can be 

employed in the preprocessing step in any order: baseline 

manipulation, compression and normalization [15]. 

Baseline manipulation is employed to reduce the effect of 

sensor drift. Sensor drift generally causes an unstable 

response in time with a slow and random variation of the 

baseline of the response. The manipulation can be based 

on differential, relative and fractional methods [15-17]. 

According to the characteristic of the CGS, identification 

parameters are more related to the original characteristics 

of the response. Then, preprocessing methods should be 
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selected keeping the main characteristic of the response 

untouched. In this study differential baseline manipulation 

was selected. 

 

 
 

Fig. 3. Flow diagram of processing method applied. 

 

Baseline manipulation is applied in subtracting from 

each sampling the initial baseline value of transient 

response: 

 

)0()()( ssm GkGkG                            (4)  

 

where Gs(k) is the original output of the sensor; Gs(0) is 

the initial baseline output of the sensor and Gm(k) is the 

adjusted output value of the sensor. The sample of baseline 

manipulated responses are presented in figure 4. 

 

 
 

Fig. 4. Response of a CGS to the mixture of methanol and 

ethanol in 100 ppm after baseline manipulation. 

 

 

Since previous studies on the CGS were investigated 

based on analyzing the normalized response of the CGS 

[6, 8, 9, 13], the second data set was generated from 

normalized responses. The normalized response of the 

CGS was generated by using the maximum level of the 

CGS response in each measurement as a normalization 

factor: 
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Data compression methods are applied to reduce the 

number of recorded points per experiment. In this step, 

different methods can be used, such as sub-sampling, 

parameter extraction and system identification [18]. Both 

datasets generated from the baseline manipulated transient 

responses and normalized responses include a large 

number of points per sample. This problem can cause the 

curse of dimensionality and affect the classification 

process. In the first data set applying the raw signal could 

also make some disturbances during the identification 

process. In this study, preprocessing techniques were 

selected based on minor effects on the original 

characteristics of the response signal. Multilevel wavelet 

decomposition could be applied as a suitable option for 

data compression according to the above conditions. Both 

mentioned feature data sets were applied to generate other 

feature data sets based on the output of multilevel wavelet 

decomposition.  

The discrete wavelet transform (DWT) described 

below was applied to decompose the sensor transient 

response into multilevel resolution. An overview of the 

wavelet analysis has been widely described in the 

literature [19-21]. A brief overview of discrete wavelet 

decomposition applied in this paper is described as 

follows. 

The classical method of computing the DWT can be 

implemented by a two channel filter bank [19-21]. The 

basic idea behind the fast algorithm is to represent the 

wavelet basis as a set of high-pass and low-pass filters in a 

filter bank. Following the filtering, the signal is decimated 

by a factor of 2 [22]. 

Down sampling by a factor of 2 denotes discarding 

every other sample of the signal sequence. The outputs of 

the low pass branch are called wavelet approximation 
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coefficients, and the outputs of the high-pass branch are 

called wavelet detail coefficients. The identity of the 

original signal is stated by the low-frequency component. 

To decompose an original signal into a multilevel 

approximation, the high frequency component must be 

eliminated and the low frequency component must be 

entered into the next filter bank consecutively. Then, 

approximation of the original signal can be generated at 

different levels of resolution by applying multilevel 

decomposition. The maximum scale can be achieved by 

performing wavelet decomposition, repetitively. The 

maximum scale is dependent on the signal length and the 

wavelet basis length [22]. 

The main advantage of the multilevel decomposition 

in representation of the sensor response is the possibility 

of saving the general attributes of the original signal when 

the number of features of the sensor response is reduced. 

According to classification results, features generated 

by the Daubechies (db2) wavelet family were presented as 

the best performance in classification among different 

wavelet families that were selected and applied. To extract 

the features from the transient response of the sensor array, 

the best level of decomposition was selected by trial and 

error. Finally, four data sets were generated for every odor 

database including features presented in table 4. 

 

 
Table 4. Evaluation results of feature extraction and classification methods applied to classify features generated 

 from the sensor array responses to gas mixtures database 

 

 

  KNN ANN Quadratic 

Odor 

Database 
Type of Feature 

% Classification 

Rate 

% Classification 

Rate 

% Classification 

Rate 

PCA LDA PCA LDA PCA LDA 

Alcohol 

Mixture 

Baseline manipulated 80.22 94.22 80.54 97.99 50.88 97.77 

Baseline manipulated (DWT)  79.33 99.11 81.82 98.88 49.55 100 

Normalized Response 73.77 74.66 66.81 81.77 44 67.33 

Normalized Response (DWT) 75.77 98.22 70.40 97.99 46.88 98.22 

 
 

3.4. Feature extraction and classification 

 

Feature selection and feature extraction techniques are 

generally employed to reduce the curse of dimensionality. 

Therefore, classification performance and efficiency are 

improved as well as ease of interpretation and modeling 

[23, 24]. In the gas identification system and machine 

olfaction area, principal component analysis (PCA) and 

linear discriminant analysis (LDA) are mostly of interest 

among diverse feature extraction and selection methods 

[17, 18]. PCA is a kind of signal representation method 

which projects in such a way that maximizes variance 

directions. The directions are defined based on the first 

eigenvectors related to the largest eigenvalues of the 

covariance matrix of input features, where the covariance 

of input features ∑G is 

 

)]()[(   GGE T

G                       (7) 

 

where  μ is the means vector of features vectors G. 

LDA is a supervised signal classification method to 

maximize class compactness in a direct way and to 

maximize separation between samples from compact 

bunches and different bunches. The first eigenvectors of 

the multiplication result of the within-class covariance 

inverse matrix and between-class covariance matrices are 

applied to make projections. The following definition can 

be applied to describe LDA when a linear projection (W) 

maximizes the objective function below [15, 17, 25, 26]: 
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where ΣB is the between-class covariance matrix, and  ΣW 

is the within-class covariance matrix. 

PCA and LDA are employed along with different 

classifiers to investigate the ability of a gas detection 

system. 

Either two- or three-dimensional projection of the 

extracted features by PCA and LDA is applied to illustrate 

the separability between classes, and the compactness of 

features from the same class and variance of the features 

from different classes, respectively [17, 18]. PCA and 

LDA techniques were applied to extract features for all 

feature data sets. Extracted features by PCA and LDA 

were applied for gas classification in combination of 

different classifiers to investigate the abilities of the 

developed e-nose structure in gas identification and 

selection of an optimum approach. 

The k-nearest neighbor (k-NN) classifier, multilayer 

perceptron (MLP) classifier and the quadratic classifier are 

well-known methods in the area of gas classification [17, 

18]. These classifiers were applied in this study to classify 

the features extracted by PCA and LDA from feature data 

sets. In the k-NN classifier k-nearest samples in the feature 

data set are selected to classify unlabeled data. The class 

with maximum members between k-nearest neighbors is 

assigned as the class number for the unlabeled feature [15, 

25, 26]. To provide the highest classification rate, the 

number of nearest neighbors (k) was selected 3 by trial and 
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error. Distances were calculated based on the Euclidean 

distance for this classifier. 

MLP is the multilayer feed-forward neural network 

that includes simple processing elements or neurons. The 

result of this structure is a complex nonlinear regression. A 

gradient descent method, which is called back propagation 

(BP) of errors, is generally applied to train the regression 

by adjusting the weights of elements of the network [17, 

24, 27]. A 3–7–3 layer structure (three inputs, seven 

neurons in one hidden layer and three outputs) was 

selected for MLP neural network classifier. The number of 

neurons in the output layer equals the number of classes in 

the odor database. The network was trained by the 

Levenberg–Marquardt (LM) optimization algorithm [17]. 

As the simplest approach, the quadratic classifier 

approximates the largest posterior probability by assuming 

unimodal Gaussian density as a likelihood function for 

each class. In this classifier, decision boundaries between 

classes are quadratic hyper surfaces [17, 25]. 

Finally, N-fold cross validation was used to estimate 

the prediction error [17, 26, 28]. This method applied by 

dividing the feature data set into N subsets. N−1 subsets 

are used as the training data set, and the remaining subset 

is employed as the testing data set. The classification rate 

is presented by the average value across N trials of the 

testing data sets. Fivefold cross validation (N = 5) was 

used to evaluate the prediction accuracy of each classifier. 

 

 

4. Results and discussion 
 

Four generated feature datasets for each odor database 

were applied to PCA and LDA feature reduction 

techniques and the generated outputs were classified by 

the mentioned classification approaches. The results of 

classification performances are presented as follows. 

Two-dimensional projection of PCA and LDA outputs 

to feature data sets of baseline manipulated responses 

(BMR), wavelet decomposition of baseline manipulated 

responses (WD-BMR), normalized responses (NR), and 

wavelet decomposition of normalized responses (WD-NR) 

generated from the gas mixture odor database are 

presented in figures 5 and 6, respectively.  

The projections well presented the separation of the 

classes from each other. However, LDA results surpassed 

the PCA, as expected. For LDA results, projections of 

extracted features based on WD-BMR indicate higher 

separability between classes than others. The best within-

group compactness was also presented by LDA projection 

of extracted features from WD-BMR. The impact of 

wavelet decomposition on between-class separability can 

be observed by comparing projections in Figs. 5 and 6. 

The best compactness within the class and separability 

between classes could be observed in the output of PCA 

and LDA to WD-BMR (Fig. 5). 

 

 

 
 

Fig. 5. (a) 2-Dimensional projection of extracted features from the BMR to alcohol mixtures database by PCA. (b) 

The same using LDA. (c) 2-Dimensional projection of extracted features from the WD-BMR to alcohol mixtures 

database by PCA. (d) The same using LDA. 
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Fig. 6. (a) 2-Dimensional projection of extracted features from NR to alcohol mixtures database by PCA. (b) The 

same using LDA. (c) 2-Dimensional projection of extracted features from the WD-NR to alcohol mixtures database 

by PCA. (d) The same using LDA. 

 

The classification results of the alcohol mixtures are 

shown in table 4. For these data, high classification rate 

could be obtained using WD-BMR and WD-NR feature 

data sets. The best classification rates were reported by the 

classification of LDA output of WD-BMR for all 

classifiers.  

As demonstrated in table 4, achieving a high 

classification rate based on the developed structure of the 

e-nose by applying capillary-attached CGSs is possible. 

However, it depends on not only the classification method 

but also the type of extracted features and reduction 

techniques. According to the presented results, extracted 

features from a baseline manipulated transient response of 

the sensor array provided the best classification rates. It 

was also presented that applying multilevel wavelet 

decomposition improved the classification rates based on 

transient response analysis.  

According to the achieved results, it can be concluded 

that analysis the number of gas mixture components by the 

suggested e-nose structure is possible. However, more 

investigations are required to achieve a perfect instrument. 

 

 

5. Conclusions 
 

A developed e-nose structure based on the array of 

capillary-attached gas sensors was designed and 

fabricated. The identification ability of the developed e-

nose structure was investigated by applying gas mixtures 

database containing short-chain alcohols mixtures. Diverse 

feature data sets were generated by extracting features 

from the transient response of the fabricated sensor array 

to odor database. Different feature extraction and 

classification techniques were applied to feature data sets, 

and classification performances were evaluated. Evaluated 

results indicated high accuracy in classification 

performance of the developed structure for most of the 

generated features. The results based on feature data sets 

generated from the transient response of the sensor array 

proved that additional identification parameters related to 

the diffusion properties of odors improved the gas 

identification process. According to the presented results, 

feature data set extracted from transient responses of the 

sensor array along with wavelet decomposition was 

selected as an optimum feature data set for gas 

identification. Suggested feature data set illustrated perfect 

identification performance. Evaluated results based on the 

above-mentioned procedure also indicated the ability of 

the developed e-nose structure in gas mixture analysis. 
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